我们为政策梯度方法介绍了一种新颖的训练程序,其中用于在飞行中优化强化学习算法的超参数。与其他HyperParameter搜索不同,我们将HyperParameter调度标记为标准的Markov决策过程,并使用epiSodic内存来存储所使用的超参数和培训背景的结果。在任何策略更新步骤中,策略学习者都指的是存储的经验,并自适应地将其学习算法与存储器确定的新的超参数重新配置。这种机制被称为epiSodic政策梯度训练(EPGT),可以联合学习单个运行中的策略和学习算法的封面。连续和离散环境的实验结果证明了利用所提出的方法促进各种政策梯度算法的性能的优点。
translated by 谷歌翻译
Dynamic movement primitives are widely used for learning skills which can be demonstrated to a robot by a skilled human or controller. While their generalization capabilities and simple formulation make them very appealing to use, they possess no strong guarantees to satisfy operational safety constraints for a task. In this paper, we present constrained dynamic movement primitives (CDMP) which can allow for constraint satisfaction in the robot workspace. We present a formulation of a non-linear optimization to perturb the DMP forcing weights regressed by locally-weighted regression to admit a Zeroing Barrier Function (ZBF), which certifies workspace constraint satisfaction. We demonstrate the proposed CDMP under different constraints on the end-effector movement such as obstacle avoidance and workspace constraints on a physical robot. A video showing the implementation of the proposed algorithm using different manipulators in different environments could be found here https://youtu.be/hJegJJkJfys.
translated by 谷歌翻译
图像分类的深卷卷神经网络(CNN)依次交替交替进行卷积和下采样操作,例如合并层或陷入困境的卷积,从而导致较低的分辨率特征网络越深。这些降采样操作节省了计算资源,并在下一层提供了一些翻译不变性以及更大的接收领域。但是,这样做的固有副作用是,在网络深端产生的高级特征始终以低分辨率特征图捕获。逆也是如此,因为浅层总是包含小规模的特征。在生物医学图像分析中,工程师通常负责对仅包含有限信息的非常小的图像贴片进行分类。从本质上讲,这些补丁甚至可能不包含对象,而分类取决于图像纹理中未知量表的微妙基础模式的检测。在这些情况下,每一个信息都是有价值的。因此,重要的是要提取最大数量的信息功能。在这些考虑因素的推动下,我们引入了一种新的CNN体​​系结构,该体系结构可通过利用跳过连接以及连续的收缩和特征图的扩展来保留深,中间和浅层层的多尺度特征。使用来自胰腺导管腺癌(PDAC)CT扫描的非常低分辨率斑块的数据集,我们证明我们的网络可以超越最新模型的当前状态。
translated by 谷歌翻译
在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
对象探测器对于许多现代计算机视觉应用至关重要。但是,即使是最新的对象探测器也不是完美的。在两个看起来与人眼类似的图像上,同一探测器可以做出不同的预测,因为摄像机传感器噪声和照明变化等小图像变形。这个问题称为不一致。现有的准确性指标不能正确解释不一致的情况,并且在该领域的类似工作仅针对人造图像扭曲的改善。因此,我们提出了一种使用非人工视频框架来测量对象检测一致性,随着时间的流逝,跨帧的方法来测量对象检测一致性。使用此方法,我们表明,来自多个对象跟踪挑战的不同视频数据集,现代对象检测器的一致性范围从83.2%至97.1%。最后,我们表明应用图像失真校正(例如.WEBP图像压缩和UNSHARP遮罩)可以提高一致性多达5.1%,而准确性没有损失。
translated by 谷歌翻译
通常使用卷积神经网络(CNN)进行计算机视觉。 CNN是计算密集型的,并且在移动和互联网(IoT)设备等电力控制系统上部署。 CNN是计算密集型的,因为它们不加选择地计算输入图像的所有像素上的许多特征。我们观察到,鉴于计算机视觉任务,图像通常包含与任务无关的像素。例如,如果任务正在寻找汽车,那么天空中的像素不是很有用。因此,我们建议对CNN进行修改以仅在相关像素上操作以节省计算和能量。我们提出了一种研究三个流行的计算机视觉数据集的方法,发现48%的像素无关紧要。我们还提出了重点卷积,以修改CNN的卷积层,以拒绝明显无关的像素。在嵌入式设备上,我们没有观察到准确性的损失,而推论潜伏期,能耗和倍增add计数均减少了约45%。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
我们为策略梯度强化学习引入了一种约束的优化方法,该方法使用虚拟信任区域来调节每个策略更新。除了将一个单一旧政策作为正常信任区域的邻近性外,我们还建议通过另一个虚拟策略形成第二个信任区域,代表了过去的各种过去的政策。然后,我们执行新政策,以保持更靠近虚拟政策,如果旧政策的运作差,这将是有益的。更重要的是,我们提出了一种机制,可以自动从过去政策的记忆中自动构建虚拟策略,从而为在优化过程中动态学习适当的虚拟信任区域提供了新的能力。我们提出的方法是在不同的环境中进行检查,包括机器人运动控制,带有稀疏奖励和Atari游戏的导航,始终如一地证明了针对最近的上政策限制性策略梯度方法,在各种环境中进行了检查。
translated by 谷歌翻译
现有的分布式协作多智能体增强学习(MARL)框架通常假设通过共识算法估计全球奖励的无向协调图和通信图。这种框架可能导致昂贵的通信成本,并且由于全球共识的要求,可扩展性差。在这项工作中,我们使用定向协调图研究Marls,并提出了一种分布式RL算法,其中本地策略评估基于本地值函数。通过与其邻居通过定向的学习诱导的通信图来实现每个代理的本地值函数,而不使用任何共识算法。采用基于参数扰动的零顺序优化(动物园)方法来实现梯度估计。通过与现有的基于动物园的RL算法进行比较,我们表明我们提出的分布式RL算法可确保高可扩展性。示出了分布式资源分配示例来说明我们算法的有效性。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译